您好,欢迎访问RTO、RCO、RTO焚烧炉专业制造商-无锡泽川环境科技有限公司!

VOCs治理设施“爆炸”等事故原因?如何避免?

发布时间:2023-03-14 08:59:00 点击:

RTO焚烧炉RTORCO专业生成厂家无锡泽川环境2023年3月14日讯  VOCs大部分都是易燃易爆气体,如果没有合理地选择工艺或规范的操作运行管理,往往导致火灾、爆炸等事故的发生。因此无论是环保设计公司还是VOCs产生企业,都必须对废气净化设施装置的安全风险问题给予高度的重视,防患于未然。

   目前常见的VOCs末端治理工艺有蓄热式燃烧(RTO)、催化燃烧(RCO)、直接燃烧(TO)、活性炭吸附脱附、低温等离子等。但VOCs废气成分复杂,通常为多种易燃易爆的混合有机气体,前期的技术工艺选择不到位或这些装置的投入使用不加以专业管理和控制,往往会带来新的安全隐患。比如活性炭装置自燃以及危废处理问题;RTO装置爆炸问题;低温等离子装置电晕放电着火问题。

20204168时许,位于深圳市龙华街道的某公司喷漆工艺的 UV光氧催化设备发生火情,火势沿管道蔓延到喷漆车间和楼顶,未发生人员伤亡。

2017628日,青海盐湖工业股份有限公司化工分公司一期乙炔装置 环保附件设施炭黑水储进行罐管线改造时发生疑似内爆事故,造成现场监护、操作人员4人受伤。

201661日,位于天津市滨海新区中塘镇东河筒村的天津市亚东化工有限公司液体染料车间 废气回收装置断电,导致正在反应中产生的废气无法通过引风装置导入废气回收系统造成泄漏。

201473日下午,新疆浩源公司正在建设中阿克苏市阿塔公路(207省道)加气站,外包设备供应商员工在进行设备调试时, 发生废气回收罐爆炸事故。事故造成设备厂家现场调试人员2人腿部被炸成重伤、公司1人轻伤。

20124月,杭州莫干山路的华东制药厂发生爆炸,事故原因为工作人员在检修车间的废气处理装置时(这个废气装置里主要是乙酸乙脂等有机物) 因为电焊工的违规操作,导致装置爆炸,爆炸形成的冲击波造成103车间及周边部分门窗破碎,并且造成企业一名义务消防员和一名电焊工受轻伤。

2007年挪威西部一家汽油处理厂 由于活性炭罐自燃导致与之相连的储罐起火而引发火灾。

案例分析:某公司废气处理系统爆燃事故

201382920分左右,宁波某公司3自动喷漆线的废气处理系统发生爆燃,设置在自动喷漆生产线间旁边外面的水泥屋面上的废气处理集装箱两端被炸开。集装箱上部的进风管道被炸断和飞离,集装箱出风管道和与其连接的等离子废气净化器全部被炸毁,输出端风机炸坏和位移。紧靠废气处理集装箱的自动喷漆间的吸风管被炸裂自动喷漆生产线的设备严重破坏

根据事故现场情况分析,这次爆燃事故的爆炸中心位于等离子废气净化器和废气处理集装箱,等离子废气净化器被炸毁,废气处理集装箱的左、右两侧及上部共3个方向都发生严重变形。集装箱的进通风管道,自动喷漆生产线的吸风罩、输送风管被炸坏,以及自动喷涂生产线间引起火灾,这些是由于等离子废气净化器和废气处理集装箱发生爆炸的冲击波及爆炸高温高热引起回燃所导致的;输出端风机位移是由于爆炸的冲击波所造成的。

01

喷涂废气处理系统的基本情况

1)废气处理系统的工艺与设备

宁波XX公司3楼自动喷漆生产线的废气处理系统,是由吸风罩、吸风管、输入端风机、送风管、废气处理集装箱、输风管、等离子废气净化器、输出端风机、排风管等组成的。该废气处理系统的工艺,是喷涂生产线的废气通过两组风机吸、送,经二级处理的工艺过程。其工艺流程大体如下:

2)有关设备、设施说明

①现场安装的废气处理集装箱是用普通钢材制作的一个长方形箱体,箱体内设置有金属网。

②现场安装的 等离子废气净化器,实际是1YJ-L静电式油烟净化器。

③现场安装的废气处理集装箱和YJ-L静电式油烟净化器 都没有看到防静电接地装置。

02

事故的直接原因

1)易燃易爆物质达到爆炸极限的原因分析

宁波XX公司3楼喷漆车间的自动喷漆生产线,使用的喷涂物料有油漆和溶剂,其主要含有二甲苯、乙酸乙酯、乙酸丁酯等危险化学品。由于喷涂生产时间较长,连续工作了17个小时,因此,废气处理集装箱或YJ-L静电式油烟净化器内的易燃易爆混合气体浓度达到了爆炸极限,或者漆雾、可燃颗粒物等易燃易爆粉尘组成的混合物达到了爆炸极限。 其中:二甲苯(爆炸极限1.0-7.0%)、乙酸乙酯(爆炸极限2.0-11.5%)、乙酸丁酯(爆炸极限1.2-7.5%)

2)引爆火源的原因分析

YJ-L静电式油烟净化器可能引起火花 。宁波XX公司使用的YJ-L静电式油烟净化器,其产品工作原理介绍:油烟废气被风机负压吸入净化器,大颗粒油滴通过粗滤网时在碰撞和重力作用下流入集油槽内,大量亚微米的烟雾进入一级、二级高压电场,油烟颗粒大部分得以降解,少部分被收集在集油板上,余下的微米级油雾微粒和烟气中的有毒有害物质进入三级等离子场后被降解成二氧化碳和水,最后排出洁净空气。由此可知,YJ-L静电式油烟净化器内存在一级、二级高压电场,高压电场可能产生火花。

同时,YJ-L静电式油烟净化器在运行过程中,由于风力的作用,可燃气体、漆雾、粉尘等金属氢氧化物的胶体粒子、非金属氧化物的胶体粒子在装置内与金属栅板发生碰撞、摩擦产生静电,静电积聚产生静电火花 。而且,YJ-L静电式油烟净化器没有国家安全认证标志、国家检验单位签发的防爆合格证标记 

 废气处理集装箱可能产生静电火花 。根据废气处理集装箱的功能分析,废气处理集装箱主要是颗粒物、粉尘的沉降收集装置。自动喷漆生产线在生产过程中产生的大量漆雾,以及需要表面喷涂工件的毛边毛刺(在运动中极易掉落),在吸风罩内的风力作用下,就可能通过吸风管输送到废气处理集装箱。由于连续作业17个小时,其颗粒物、粉尘没有及时清理 ,这些颗粒物、粉尘、漆雾、漆尘、可燃气体在废气处理集装箱内,由于风力的作用,不停的进行悬浮运动,碰撞、摩擦产生静电,静电积聚产生静电火花。

YJ-L静电式油烟净化器若如其工作原理介绍,存在一级、二级高压电场,分析倾向是由于YJ-L静电式油烟净化器的高压电场产生火花为引爆火源。

03

事故的间接原因

1)宁波XX公司的废气处理系统,没有规范的设计、安装、检测检验资料,YJ-L静电式油烟净化器、废气处理集装箱没有产品合格证,没有国家安全认证标志、防爆合格证标记。给安全生产留下了重大的设备隐患。

2)自动喷漆线连续生产17个小时,对废气处理集装箱内的沉降物质没有及时清理,工件毛刺、粉尘、漆雾颗粒物等金属氢氧化物的胶体粒子、非金属氧化物的胶体粒子没有得到及时清除处理。

3)宁波XX公司对喷漆车间自动喷漆线废气处理系统的危险有害因素辨识不到位,事故隐患排查不到位,从事故现场发现甲类生产场所使用的电机未选用防爆型、动力电线未采用镀锌钢管穿管保护,不符合相关规范要求。

04

防范措施

1)选用规范的合格设备。危险工作场所的生产工艺及设备,应委托具有相应资质的单位进行规范设计、制造。应当使用符合安全技术规范要求的设备、设施。喷涂作业及其废气处理设备、装置在投入使用前,应当核对其附有安全技术规范要求的设计文件、产品质量合格证明、安装及使用维修说明、监督检验证明等文件。

2)加强对生产设备维修保养。应加强喷涂作业场所及废气处理系统设备设施的日常维护保养,从而使生产设备尤其是安全设施如可燃气体报警装置、通风设施,废气处理设施等保持良好的工作状态,提高本质安全度;及时清除和妥善处理废弃物,从而消除事故隐患。

以下几点提醒要注意:

1、处理装置设计和采用的电器元件必须按照规范要求符合防爆等级;

2、设备布置要满足安全距离的要求;

3、与气体接触的自动控制阀必须使用气动阀;

4、必须选用防爆风机;

5、在所有处理系统中必须在适当位置安装符合国家标准的阻火器!

6、在处理装置中的敏感部位(超温、超压等)要按照规范设置报警装置及应急处理措施;

7、为确保运行安全,必要时可采用连锁设计;

8、要考虑现场整体的安全、环境应急预案。

注:废气治理技术规范文件。

RTORegenerative Thermal Oxidizer,蓄热式焚烧炉)系统在VOCs治理领域的应用日益广泛,但爆炸事故频发。因缺乏公开的事故调查报告,爆炸原因不明,同类事故时有发生,令人心痛。

RTO,RCO,RTO焚烧炉,蓄热式焚烧炉

1、事故概况

安徽某制药厂于20196151700临时停产,停产后RTO系统按规程停机。该厂于次日800投料复产,RTO系统同时开机并升温,此时旁通阀开启、废气导入阀关闭,废气经RTO系统旁路净化系统处理达标后高空排放;RTO炉经吹扫并加热至800℃后,旁通阀关闭,废气导入阀开启,废气进入RTO炉,系统压力、温度等一切正常。废气导入2h后(1100RTO系统发生爆炸,爆炸声前后两次,间隔时间较短,一处位于RTO炉及相邻风机,另一处位于系统前端废气收集管道。事故导致RTO炉右侧蓄热室钢结构、保温棉、蓄热陶瓷和RTO炉近端的引风机、风管严重损坏,较远端风管脱落,并引燃周边干燥物,无人员伤亡。

2、事故原因分析

VOCs作为可燃物,能够与氧气在一定的浓度范围(爆炸浓度的上、下限之间和爆炸上限以上)形成预混气,遇到点火源(明火、电火花、静电火花、高热物等)会发生爆炸或燃烧,并释放大量的热和气体。

本文根据爆炸三要素:可燃物、助燃物和点火源进行排查分析。

2.1可燃物

该制药厂进入RTO系统的废气主要来源于生产车间、罐区、污水站、固废仓库、原料仓库以及风管(积液长期未排,积液挥发)等,废气主要成分为甲醇、乙醇和甲苯等,这些VOCs均为可燃性气体(可燃物)。

由于RTO系统运行1.5h后才发生安全事故,风管内应无淤积废气;罐区废气采用集气罩方式收集,事发前无装卸料过程,不能形成达到爆炸极限的预混气;污水站、固废仓库、原料仓库等区域VOCs挥发量很小,事发前无大宗化学品或危废泄漏,也不具备形成达到爆炸极限的预混气。

事故后排查车间生产装置时发现,某蒸馏釜有残存甲醇,该釜蒸汽阀未完全关闭,使该釜一直处于被加热状态。因此,该次事故达到爆炸极限的可燃物主要来源于甲醇蒸馏釜。

2.2 助燃物

RTO系统运行时助燃风机会向氧化室鼓入大量空气(氧气),但RTO炉氧化室事故后仍完好无损,说明氧化室未发生爆炸,助燃物非来自助燃风机;而各生产车间、罐区等采用集气罩收集的废气,以及污水站、固废仓库、原料仓库的通风换气,这些废气中混有大量的空气(氧气),为该起事故提供了助燃物。

2.3点火源

1)明火:当进入RTO炉内的废气氧化放热不足以维持氧化室的设定温度时,位于氧化室内的燃烧器会自动补入天然气并点火升温。事故后打开炉体发现RTO氧化室完好无损,并未发生爆炸,可排除明火为该起事故的点火源。

2)电火花:位于氧化室内的燃烧器采用了电火花点火器,但氧化室未发生爆炸,也排除了电火花因素。

3)静电火花:该厂废气输送管道及风机均未采用可导静电材质,废气高速流通与管壁摩擦及风机叶轮高速转动极易形成静电且静电无法导出,但废气输送管道和风机位于RTO炉前端,达到爆炸极限的预混气遇到静电后即可发生爆炸,而远端管道在事故中仅是脱落,损坏程度低;且风机爆炸后不会将预混气输送至RTO炉内。因此,可排除静电火花因素,同时说明风机和管道不是第一起爆点。

4)高热物:高热物的温度高于可爆成分的起燃点时可引起爆炸,RTO炉高热物主要为氧化室内表面和蓄热陶瓷。其中氧化室未发生爆炸,可排除氧化室高温表面为本次事故的点火源;事故后打开炉体发现,RTO右侧蓄热室钢结构坍塌、蓄热陶瓷破碎、保温棉脱落,而另外两个蓄热室完好。由此可知,RTO炉右侧蓄热室为第一起爆点,其高温蓄热陶瓷为爆炸事故提供了点火源。

2.4 事故经过还原

2019615日,该制药厂停产时某工人工作疏忽忘记关闭生产车间甲醇蒸馏釜蒸汽阀,且放料不彻底;次日800复产时某工人未对岗位装置进行全面检查,在厂区蒸汽总阀开启后,残存釜内的甲醇逐渐升温并沸腾,大量甲醇蒸汽涌入风管后形成达到爆炸极限的预混气;RTO系统未安装实时废气浓度检测仪,废气导入阀无法连锁关闭,预混气进入RTO炉内,在流经RTO炉右侧蓄热室过程中升温至起燃点后发生爆炸,致使RTO炉右侧蓄热室钢结构、蓄热陶瓷和保温棉严重损害;由于RTO系统未安装阻火器,爆燃的废气回火至RTO炉前端的风机和风管,并导致风机爆炸、风管脱落;脱落的风管内仍存在燃烧的废气,进而引燃周边的干燥物。

RTO,RCO,RTO焚烧炉,蓄热式焚烧炉

防范措施

3.1源头消减

1)减量:强化车间预处理,如将常温循环水改为冷冻盐水,提高冷凝效率;增加吸收类循环液的更换频次,并设置自动加药、排污控制,提高吸收效率等,以减少进入RTO系统中VOCs的总量,从而降低废气达到爆炸的风险。

2)降浓:储罐呼吸气、冷凝器不凝气等浓度较高,直接接入风管极易形成达到爆炸极限范围的预混气,可通过计算一定温度时某成分饱和蒸气压下的浓度,并将其稀释至爆炸下限(LEL)的25%设计风量;设置缓冲罐并补充新风,确保进入RTO系统的废气浓度低于其25%LEL

3.2过程预防

1)导静电:风管、风机等废气输送设备设施在不腐蚀情况下尽量选择刷有石墨涂层的玻璃钢、碳钢或不锈钢材质,并跨接、接地;同时避免直角弯头及弯头处尖角,防止废气输送过程中因摩擦起静电而无法导出。

2)排积液:废气常因洗涤塔除雾效果不佳或冷却作用而在风管中形成积液,积液中含有VOCs并不断挥发至废气中,存在浓度升高现象,须定期排出。

3)测浓度:RTO系统前一定距离设置在线(实时)浓度检测仪,并与RTO系统废气导入阀、应急排空阀连锁控制,距离根据检测仪响应时间确定,当废气浓度超过25%LEL时,废气导入阀关闭,应急排空阀开启,防止高浓废气进入RTO系统。

4)泄爆:风管每隔一定间距设置泄爆阀,泄爆阀压力低于风管承受应力;RTO系统前置洗涤塔在保证有效使用情况下选用低强度材质制作,以便爆炸发生时及时泄压,减少爆炸损失。

3.3末端把控

1)双旁通设计:RTO系统设置冷旁通、热旁通,其中冷旁通与浓度检测仪、废气导入阀、应急排空阀连锁,当浓度超过25%LEL时,废气导入阀关闭,废气无法进入RTO系统;应急排空阀开启,废气经冷旁通处理达标后排放。热旁通与新风阀、温度仪、压力计连锁,当RTO炉内温度、压力异常时,新风阀开启,稀释浓度降温降压,热旁通阀开启,部分高温废气直接从氧化室排出,经混合器降温冷却后排至烟囱,确保RTO系统安全连续运行。

2)双流场模拟:RTO炉设计时对废气进行气流场和热流场模拟,其中气流场模拟确保RTO炉内无死角,废气能够均匀流畅通过,避免局部湍流或浓度过高;热流场模拟确定陶瓷装填量,选择适宜热回收效率,避免RTO炉蓄热室冷端温度过高,减少安全隐患。

3)阻火:RTO炉前端和生产车间后端风管设置阻火器、水封等,防止RTO炉或风管爆炸回火至前端或车间,减少事故损失。

4)监控:RTO系统与生产、风管压力计、中级风机、浓度检测仪等连锁控制,并纳入生产管理监控,避免生产与环保脱节。

结语

通过对某制药厂RTO系统爆炸因素进行逐一排查分析,还原了事故发生经过,确定了该起事故是因工人不当操作和RTO系统缺乏相应安全连锁装置所致,并从源头消减等方面提出诸多安全防范措施,为相关单位部门在RTO系统的设计生产、操作使用、事故分析、隐患排查、安全管理等方面提供经验参考。

事故简介

江苏某化工企业RTO 净化系统在2015 年3 月8 日9 时43 分和3 月27 日3 时20 分两次发生了爆炸。事故没有造成人员伤亡,聚合物多元醇车间引风机损坏,现场仪表烧毁,RTO部分装置损毁严重,直接经济损失达100 余万元。

2事故时车间生产情况

该企业生产方式为间歇性生产,根据企业提供资料,事故发生时仅POP、PL1/PL2产品的工艺废气通过DN50~DN350不等的金属管道进行了收集(主要污染物为环氧乙烷、环氧丙烷、三甲胺、异丙醇、苯乙烯、丙烯腈等),废气收集后通过引风机进入RTO焚烧,该RTO为R—RTO(旋转式蓄热焚烧炉)。废气收集、处理的详细流程下图所示。

RTO,RCO,RTO焚烧炉,蓄热式焚烧炉

3事故原因分析

3.1事故直接原因

调查发现,企业真空泵尾气出口温度达73℃以上,根据有机废气冷凝效率计算,公式见下(1)-(3):

RTO,RCO,RTO焚烧炉,蓄热式焚烧炉

在75℃时,对应排气中有机物最高饱和质量浓度及爆炸范围相关数据详下表:

RTO,RCO,RTO焚烧炉,蓄热式焚烧炉

通过理论计算,当真空泵出口尾气温度为75℃时,各有机物饱和浓度均极高,如果废气稀释倍数不够极易发生安全事故。现场测得单套PL真空泵中环氧乙烷废气流量约120m3/h,3套合计360m3/h,事故发生时焚烧炉实际处理风量不超过5000m3/h,混合气体中有机物总浓度的对应体积比约7.2%,即使仅接入1套含环氧乙烷尾气,其平均浓度2.4%也处于对应的爆炸范围之内,由此可见,真空泵出口尾气排放温度过高,而有机物沸点较低,导致污染物排放浓度过高,同时相应的稀释倍数不够,外加环氧丙烷、环氧乙烷的化学性质活泼,最终导致接入焚烧炉中的废气达到相应爆炸极限,从而造成爆炸事故的发生。

3.2事故间接原因

1)收集系统设计不合理。调查过程发现对于真空泵高浓度有机废气,企业均未进行冷凝回收预处理,且目前企业对PL系统真空泵出口尾气所设计的收集方式极不合理,真空泵出口所配备的伞形罩集气量有限,尾气收集总管仅DN50,正常运行时系统稀释风量难以保证。

2)预处理措施不到位。该企业POP、PL1、PL2车间对有机废气所采用的活性炭吸附未配备脱附再生系统,基本无效,末端所配置的不锈钢高压风机无变频系统,导致废气收集管路系统中负压值过高,能耗较高且不利于有机物的冷凝回收,所采用的金属材质水洗塔强度较高,当系统发生爆炸等意外事故时无法起到有效泄爆的效果,导致爆炸产生的冲击波沿着管道进一步往生产车间传导,加剧了爆炸的次生危害。

3)RTO炉本体存在问题。本项目中部分产品含有氯元素,所采用的设备本体为SUS304,旋转阀材质为SUS316L,诸多案例表明,蓄热陶瓷体由于质量较大,支撑件通常要承受较大的应力腐蚀,当体系含氯时(如环氧氯丙烷)高温焚烧处理过程中将产生HC1等污染物,对设备本体、RTO炉旋转阀易产生较大腐蚀,系统难以稳定、有效运行。

其次项目废气中含有部分丙烯腈、苯乙烯等有机物,上述物料在温度较高时极易发生自聚合,导致RTO炉蓄热陶瓷体在使用一段时间后设备阻力变大,同时底部有高沸点有机物粘附现象,易引起火灾等安全事故。

4事故预防对策

RTO在正常工况下不易发生火灾、爆炸事故。但由于精细化工行业废气成份复杂多变、浓度波动大,易造成焚烧炉运行稳定性较差,存在一定的安全隐患。建议RTO生产厂家及使用企业采取如下安全措施以防范RTO火灾、爆炸事故:

1)优化收集系统。对吸风罩、风机选用进行规范设计,同时废气收集管线需统筹规划,形成支管一主管一处理装置一总排口的收集处理系统,确保废气收集效果。对于易燃易爆废气在设计收集系统和预处理系统时,不追求过高的强度反而有利于系统安全,不过即使选用强度不高的设备和材料,在RTO炉设备本体、废气收集管道等节点仍需安装泄爆膜片

2)强化预处理措施。由于精细化工行业废气排放浓度有较大的波动,因此需对各类不同浓度的有机废气进行混匀、缓冲和预处理,建议企业采用PP填料塔对有机废气进行预处理,由于PP填料塔强度不高,在发生事故时极易泄爆,最大限度的保证系统安全。

3)渐进化科学调试。RTO炉调试时理应先进行空载调试,待空载调试稳定后再逐步接入低浓度有机废气,如企业污水池加盖收集后废气、车间换风废气等,最终再逐步接入高浓度废气,同时对拟接入高浓度废气的排放流量、排放浓度进行检测,重点关注峰时浓度,单一排气点有机浓度宜控制在1000ppm以内,最高不得超过5000ppm。

4)安装在线监控系统,设置电控系统操作间。RTO炉净化处理系统是一项人机高度结合的设备,虽然其自动化程度较高,但必须安排专人进行维护与管理,如RTO炉在发生爆炸前有机物浓度常会在短时间内迅速升高,此时系统若有人值守则可提前发出预警并采取必要的措施,避免事故的发生;同时对RTO各系统尾气安装TVOC浓度在线监控系统,为企业管理提供必要的数据支撑。